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Introduction
Notations in the time domain

V (t) = V0 sin [2πν0t + ϕ(t)]

where ϕ(t) is the phase “noise”

Time error x(t):

V (t) = V0 sin [2πν0 (t + x(t))]

with x(t) =
ϕ(t)
2πν0

[s]

“My watch is 39 seconds late”:

twatch = 10 h 10 min 37 s
tref = 10 h 11 min 16 s

⇒ x(t) = −39 s
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Frequency noise

V (t) = V0sin [2πν0t + ϕ(t)]

Instantaneous frequency ν(t):

V (t) = V0 sin [2πν(t)]

with ν(t) =
1

2π
d [2πν0t + ϕ(t)]

dt
= ν0 +

1
2π

dϕ(t)
dt

[Hz]

Frequency noise ∆ν(t):

∆ν(t) =
1

2π
dϕ(t)

dt
[Hz]

Frequency deviation y(t):

y(t) =
∆ν(t)
ν0

=
1

2πν0

dϕ(t)
dt

[dimensionless]
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Frequency noise vs Phase noise

Phase and frequency noise: 2 representations of 1 phenomenon

x(t) =
ϕ(t)
2πν0

y(t) =
1

2πν0

dϕ(t)
dt

 ⇒ y(t) =
dx(t)

dt

A fundamental difference:

ϕ(t) and x(t) are instantaneous
∆ν(t) and y(t) have to be averaged

ȳk =
1
τ

∫ tk+τ

tk
y(t)dt =

x(tk + τ)− x(tk )

τ
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Notations in the frequency domain

Power Spectral Densities (PSD)

Fourier Transform (finite energy):

Φ(f ) =

∫ +∞

−∞
ϕ(t)e−j2πftdt [s]

Energy Spectral Density (finite energy):

|Φ(f )|2 =

∣∣∣∣∫ +∞

−∞
ϕ(t)e−j2πftdt

∣∣∣∣2 [s2]

Power Spectral Density (finite power):

Sϕ(f ) =

〈
lim

T→∞

 1
T

∣∣∣∣∣
∫ +T/2

−T/2
ϕ(t)e−j2πftdt

∣∣∣∣∣
2
〉 [s] ≡ [Hz−1]
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Relationships between PSD

Time error PSD: Sx (f )

x(t) =
ϕ(t)
2πν0

⇒ Sx (f ) =
1

4π2ν2
0

Sϕ(f )

Dimension: [s3] ≡ [Hz−3]

Frequency deviation PSD: Sy (f )

y(t) =
1

2πν0

dϕ(t)
dt

⇒ Sy (f ) =
f 2

ν2
0

Sϕ(f )

y(t) =
dx(t)

dt
⇒ Sy (f ) = 4π2f 2Sx (f )

Dimension: [s] ≡ [Hz−1]
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Noise model

The power law noise model

Sy (f ) =
+2∑

α=−2

hαfα α integer

Sy (f ) Sϕ(f ) Noise type Origin
h−2f−2 b−4f−4 Random Walk Freq. Mod. Environment
h−1f−1 b−3f−3 Flicker F.M. Resonator

h0 b−2f−2 White F.M. Thermal noise
h1f b−1f−1 Flicker Phase Mod. Electronic noise
h2f 2 b0 White P.M. External white noise
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White FM vs Random Walk FM

White FM

Random
Walk FM
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A statistical estimator
as well as a spectral analysis tool

Definition of the true variance:
I2(τ) =

〈
(ȳk − 〈ȳk 〉)2

〉
Estimation of the true variance:

σ2(N, τ) =
1

N − 1

N∑
i=1

ȳi −
1
N

N∑
j=1

ȳj

2

The Allan variance (2-sample variance):

σ2
y (τ) =

〈
σ2(2, τ)

〉
=

〈
2∑

i=1

ȳi −
1
2

2∑
j=1

ȳj

2〉

σ2
y (τ ) =

1
2

〈
(ȳ2 − ȳ1)2

〉
= AVAR(τ)

〈〉
stands for:
ensemble average
time average
≡ convolution. . .
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A spectral analysis tool
as well as a statistical estimator

Convolution in the time domain. . .

σ2
y (τ) =

〈[∫ +∞

−∞
y(t)hy (tk − t)dt

]2〉

with


hy (t) =

−1√
2τ

if −τ ≥ t < 0

hy (t) =
+1√
2τ

if 0 ≥ t < τ

hy (t) = 0 else

. . . filtering in the frequency domain

σ2
y (τ) =

∫ ∞
0

Sy (f ) |Hy (f )|2 df

with |Hy (f )|2 = |FT [hy (t)]|2 = 2
sin4(πτ f )

(πτ f )2
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Convergence criterion: the moment condition

Convergence for drift

σ2
y (τ) is a first-order difference (derivative):

not sensitive to constant (lin. ph. drift)
sensitive to linear frequency drift

Convergence for power-law noise

σ2
y (τ) =

∫ ∞
0

hαfα |Hy (f )|2 df

converges for f−2, f−1 and white FM
does not converge for f 1 and f 2 FM

The moment condition∫ +∞

−∞
|Hy (f )|2 fαdf converges⇔

∫ +∞

−∞
hy (t)tqdt = 0 for 0 ≤ q ≤ −α− 1

2
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Link between noise levels and variance responses

σ2
y (τ) = 2

∫ +∞

0
hαfα

sin4(πτ f )

(πτ f )2 df

fh is the high cut-off frequency

Sy (f ) h−2f−2 h−1f−1 h0f 0 h+1f+1 h+2f+2

σ2
y (τ)

2π2h−2τ

3
2 ln(2)h−1

h0

2τ
[1.04 + 3 ln(2πfhτ)] h+1

4π2τ2
3h+2fh
4π2τ2
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Practical calculation of the Allan variance
Calculation from time error samples

Calculation from frequency deviation

σ2
y (τ) =

1
2

〈
(ȳ2 − ȳ1)2

〉
=
〈

[y(t) ∗ hy (t)]2
〉

σ2
y (τ) =

∫ ∞
0

Sy (f ) |Hy (f )|2 df

Calculation from time error samples

σ2
y (τ) =

∫ ∞
0

Sx (f ) |j2πfHy (f )|2 df

=
〈

[x(t) ∗ hx (t)]2
〉

with hx (t) =
dhy (t)

dt

σ2
y (τ) =

1
2

〈
(ȳ2 − ȳ1)2

〉
=

1
2τ

〈
[x(t + τ)− 2x(t) + x(t − τ)]2

〉
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Practical calculation of the Allan variance
Calculation from spectral density

Calculation from frequency deviation

σ2
y (τ) =

1
2

〈
(ȳ2 − ȳ1)2

〉
=

∫ ∞
0

Sy (f ) |Hy (f )|2 df

Calculation from spectral density

From a Phase Noise Measurement System:
Sy (fk ) with fk ∈ {f1,2f1, . . . , kf1, . . . ,Nf1}

σ2
y (τ) = 2

N∑
k=1

Sy (kf1)
sin4(πτkf1)

(πτkf1)2 f1

fh is the bandwidth of the system
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Allan variance with or without overlapping

Allan variance with overlapping

t-

ȳk6
τ = 3τ0

- �τ0

τ0-steps moving average

Benefits and drawbacks :
lower dispersion
more correlated estimates

Allan variance without overlapping

t-

ȳk6
τ = 3τ0

- �τ0

Shifted by τ -steps :
τ = 3τ0 ⇔ Ȳ1 = (ȳ1+ȳ2+ȳ3)/3

Benefits and drawbacks :
less correlated estimates
higher dispersion
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Allan variance versus Allan deviation

ADEV(τ) = σy (τ) =
√
σ2

y (τ)

Physical meaning

σy (τ) ≡ ∆t
τ

Ex.: Cs clock σy (τ = 1day) = 10−14

⇒ ∆t ≈ 10−14 · 105 = 10−9 = 1 ns over 1 day

σy (τ) ≡ ∆f
ν0

(during τ )

Ex.: H-Maser @ 100 MHz σy (τ = 1hour) = 10−14

⇒ ∆f ≈ 10−14 · 108 = 10−6 = 1µHz over 1 hour

Benefits and drawbacks

Easy to interpret
Biased
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Chi-squared and Rayleigh distribution

Allan variance: σ2
y (τ) =

1
2

〈
(ȳ2 − ȳ1)2

〉
Estimate: σ̂2

y (τ) =
1

2N

N∑
i=1

(ȳ2 − ȳ1)2

ȳ2 − ȳ1: Gaussian centered values

(ȳ2 − ȳ1)2: χ2
1 distribution

1
2N

N∑
i=1

(ȳ2 − ȳ1)2: χ2
N distribution

Allan deviation: σy (τ) =

√
1
2

〈
(ȳ2 − ȳ1)2

〉
Estimate: σ̂y (τ) =

√√√√ 1
2N

N∑
i=1

(ȳ2 − ȳ1)2 ⇒ χN distributed (Rayleigh)

N is the number of Equivalent Degrees of Freedom (EDF)
F. Vernotte Variance measurements 21
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Reminder of the Equivalent Degrees of Freedom

Meaning of the EDF

Mean(χ2
ν) = ν and Variance(χ2

ν) = 2ν
The EDF ν contains the information about the dispersion of the
random variable χ2

ν

Estimation of the EDF

σ̂2
y (τ) =

1
2N

N∑
i=1

(ȳ2 − ȳ1)2 ⇒ χ2
N if {ȳ1, ȳ2, . . .} uncorrelated!

False:
for low frequency noises (flicker and random walk FM)
with overlapping variances

Algorithm for estimating the EDF:
C. Greenhall and W. Riley, 2003, “Uncertainty of Stability
Variances Based on Finite Differences” (35th PTTI).
Used in Stable 32 as well as in SigmaTheta.
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Dispersion of Allan deviation estimates

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000

A
D

E
V

 σ
y(

τ)

Integration time τ

ν=1

ν=4.3
ν=10

ν=44000 White FM asymptote

Does this mean that the errorbars should be longer downwards
than upwards?

No, it doesn’t!
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World of the model versus world of measures

θ is the model parameter
ξ is a measure of the parameter

Example:
Parameter σy (τ = 10 s) =

√
h0/20 where h0 is the white FM level

Measure σ̂y (τ) is a measure of σy (τ = 10 s)

World of the model (direct problem):

Knowing the parameter θ0, how is the measure ξ distributed?
Only valid for simulations!

World of the measures (inverse problem):

Knowing the measure ξ0, how to estimate a confidence interval over θ?
It’s the right question of the metrologist!
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Model parameter and measure for a χ2 distribution
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Let us fix the measure to ξ0 = 1± 5 %. . .
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Model parameter values for a measure ξ0 ≈ 1
Theoretical results versus 20,000 simulations

 0.94

 0.96
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 1
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M
ea
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 ξ

Parameter θ

2.5 % 2.5 %95 %

0.521 6.28

 <θ> = 1.77

 e<ln(θ)> = 1.33

The errorbars should be shorter downward than upward!
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Study of a χ distribution with 2 degrees of freedom
Direct problem

Probability density function: p(χ) = χe−χ
2/2

The pdf is normalized:
∫ ∞

0
p(χ)dχ = 1

Mathematical expectation: µ =

∫ ∞
0

χ · p(χ)dχ =

√
π

2

Cumulative distribution function: P(χ) =

∫ χ

0
p(y)dy = 1− e−χ

2/2

Inverse cdf: P−1(α) =
√
−2 ln(1− α)
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Confidence Interval of a χ2 random variable

{. . . χi . . .} is a set of realizations of the random variable χ
P−1(0.025) ≈ 0.22502
⇒ χi < 0.22502 with 2.5% confidence

P−1(0.975) ≈ 2.7162
⇒ χi < 2.7162 with 97.5% confidence

Confidence Interval:
E(χ) ≈ 1.2533
0.22502 < χi < 2.7162 with 95% confidence

General case of a random variable x = k · χ

Estimation of the scale factor: k =
E(x)
E(χ)

≈ < x >
µ

⇒ 0.22502 · k < xi < 2.7162 · k with 95% confidence
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Probability density function of a χ2 distribution
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Conditionnal probabilities
Reduced variable (I)

Let us consider the standard χ2
2 variable: χ2

2 = X 2
1 + X 2

2
where X1 and X2 are 2 Gaussian centered standard random
variables

⇒ E(χ2
2) = 2 ⇒ E

(
1
2
χ2

2

)
= 1.

We assume that σ̂2
y (τ) = ξ2 is χ2

2 distributed and is an unbiased
estimator of the parameter σ2

y (τ) = θ2:

E
(
ξ2

θ2

)
= 1.

We can then define the reduced variable χ2
2 as:

χ2
2 = 2

ξ

θ
.
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Reduced variable (II)

By extension, we assume that σ̂y (τ) = ξ is χ2 distributed
and ξ is an estimator of the parameter σy (τ) = θ.
We can then define the reduced variable χ as:

χ =
√

2
ξ

θ
.

The differential dχ is then:

dχ =
∂χ

∂ξ
dξ +

∂χ

∂θ
dθ.

From p(χ) we can deduce P(ξ|θ0) and P(θ|ξ0)
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Parameter estimation from a single measure
Usual frequentist reasonning

We assume that the measure ξ represents the estimate σ̂y (τ) and the
parameter θ stands for the real unknown value σy (τ).

Reduced variable: χ =
√

2ξ/θ
Low bound: B2.5% ≈ 0.22502
High bound: B97.5% ≈ 2.7162
95 % confidence interval: 0.22502 <

√
2ξ/θ < 2.7162

Frequentist reversal:
√

2ξ0

2.7162
< θ <

√
2ξ0

0.22502
@ 95 %

⇒ 0.52066 · ξ0 < θ < 6.2847 · ξ0 with 95 % confidence.

We obtain directly the same result from P(θ|ξ0) (as well as from the
Bayesian method with a total lack of knowledge prior).
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Generalization to a χν distribution

Reduced variable: χ =
√
ν
ξ

θ

pdf: p(χ) =
21−ν/2χν−1e−χ

2/2

Γ(ν/2)

Mathematical expectation: µν =
√

2
Γ
(
ν+1

2

)
Γ(ν2 )

cdf: P(χ) = Γ

(
ν

2
,
χ2

2

)
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Parameter estimation
Allan variance

We assume that σ̂2
y (τ) = ξ2 is χ2

2 distributed and is an estimator
of the parameter σ2

y (τ) = θ2.

Reduced variable: χ2
2 = 2

ξ2

θ2

Mathematical expectation:
〈
χ2

2

〉
= 2

⇒
〈

2
ξ2

θ2

〉
= 2 ⇔

〈
ξ2

θ2

〉
= 1

For a given parameter θ2
0:
〈
ξ2
〉

= θ2
0

The average of the measures given by the parameter θ2
0 is equal

to θ2
0: ξ2 is an unbiased estimator of θ2

0.
For a given measure ξ2

0:
〈
θ2
〉

= ξ2
0

The average of the parameter values which give the measure ξ2
0

is equal to ξ2
0 : the measure ξ2

0 may be used for representing
the parameter θ2 (for fitting. . . except in a log-log plot!)
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Parameter estimation
Allan deviation

We assume that σ̂y (τ) = ξ is χ2 distributed and is an estimator of
the parameter σy (τ) = θ.

Reduced variable: χ2
2 =
√

2
ξ

θ

Mathematical expectation:
〈
χ2

2

〉
= µ =

√
π/2

⇒
〈√

2
ξ

θ

〉
=

√
π

2
⇔

〈
ξ

θ

〉
=

√
π

4

For a given parameter θ0: 〈ξ〉 =
√
π/4θ0 ≈ 1.128θ0

ξ is a biased estimator of θ0 (overestimated by 13%).
For a given measure ξ0: 〈θ〉 =

√
4/πξ0 ≈ 0.886θ0

the measure ξ0 should NOT be used for representing the
parameter θ (underestimated by 13 %).

Never fit the curve of Allan deviation, always use the Allan variance!
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Increasing the number of edf: the Total variance

The longer the time du-
ration, the larger the
uncertainty.

What about very long
term stability ?

In order to improve estimates for very long term, D. Howe developed:
Total variance: UFFC-47(5), 1102-1110 (2000)

T̂heo: Metrologia 43, S322-S331 (2006)
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Extrapolation to very long term time stability

Fitting curve over variance measurement (I)

σ2
y (τ) =

4∑
i=0

Ci Φi (τ) with Φi (τ) = τ i−2

How to estimate the Ci coefficients?

Classical least squares:

N∑
j=1

(
σ̂2

y (τj )−
4∑

i=0

Ci Φi (τj )

)2

is minimum

not suitable for high dynamic
not suitable for positive or null values
not suitable for variance curves
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Extrapolation to very long term time stability

Fitting curve over variance measurement (II)

σ2
y (τ) =

4∑
i=0

Ci Φi (τ) with Φi (τ) = τ i−2

How to estimate the Ci coefficients?

Relative least squares:

N∑
j=1

[
1

σ̂2
y (τj )

(
σ̂2

y (τj )−
4∑

i=0

Ci Φi (τj )

)]2

is minimum

equivalent to a least square fit on log-log plot
doesn’t take into account the uncertainties over the Allan
variance measures
not suitable for variance curves
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Fitting curve over variance measurement (III)

σ2
y (τ) =

4∑
i=0

Ci Φi (τ) with Φi (τ) = τ i−2

How to estimate the Ci coefficients?

Weighted relative least squares:

N∑
j=1

[
1

EDF
[
σ̂2

y (τj )
] 1
σ̂2

y (τj )

(
σ̂2

y (τj )−
4∑

i=0

Ci Φi (τj )

)]2

is minimum

equivalent to a least square fit on log-log plot
takes into account the uncertainties over the Allan variance
measures
suitable for variance curves
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Estimation of the noise levels from the fitting curve

σ2
y (τ) =

4∑
i=0

Ci Φi (τ) with Φi (τ) = τ i−2

C0τ
−2 White or Flicker PM: h+2 =

4π2C0

3fh
or h+1 ≈ 4π2C0

C1τ
−1 White FM: h0 = 2C1

C2τ
0 Flicker FM: h−1 =

C2

2 ln(2)

C3τ Random Walk FM: h−2 =
3C3

2π2

C4τ
2 Linear frequency drift: D1 =

√
2C4

Uncertainties ∆hα ? See Vernotte et al., IM-42(2), 342-350 (1993)
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Extrapolation to very long term time stability
Some recommendations

Is it possible to extrapolate the fit beyond the
last Allan variance measure?

Sometimes yes, but very carefully !

We ought already to answer to the following
questions. . .

1 Is the longest term noise or drift asymptote visible on the curve?
Flicker FM for Cesium, random walk FM and/or linear frequency drift otherwise

2 Is this asymptote well determined ?
This asymptote must be dominant for at least 2-3 octaves

3 Is the curve compatible with a null coefficient for the longest term
noise or drift ?
The bottom uncertainty domains can fit correctly the other asymptotes

If you answered YES to the questions 1 and 2, and NO to the last
question, you may try. . .
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